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SUMMARY

The interaction between the hydrodynamic forces of a flow field and the elastic forces of adjacent deformable
boundaries is described by elastohydrodynamics, a coupled fluid–elastic membrane problem. Direct numerical
solution of the unsteady, highly non-linear equations requires that the dynamic evolution of both the flow field
and the domain shape be determined as part of the solution, since neither is knowna priori. This paper describes
a numerical algorithm based on the deformable spatial domain space–time (DSD=ST) finite element method for
the unsteady motion of an incompressible, viscous fluid with elastic membrane interaction. The unsteady Navier–
Stoke and elastic membrane equations are solved separately using an iterative procedure by the GMRES
technique with an incomplete lower-upper (ILU) decomposition at every time instant. One-dimensional, two-
dimensional and deformable domain model problems are used to demonstrate the capabilities and accuracy of the
present algorithm. Both steady state and transient problems are studied.# 1997 by John Wiley & Sons, Ltd.
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INTRODUCTION

Flows involving moving boundaries and their associated hydrodynamic instabilities are encountered
in many industrial, technological and environmental applications.1 One such application is in thin
film coating systems where a viscous liquid is applied to a flat, deformable substrate such as paper,
photographic film or plastic or magnetic tape.2–5 The ideal mode of fluid flow in most thin film
coating systems is two-dimensional, laminar and steady state. Even a small non-uniform deformation
of the substrate and=or the coating element due to flow instabilities or flow–elastic interactions could
result in a non-uniform coating thickness or other defects. Non-uniform hydrodynamic forces on the
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substrate and the likelihood of flow instability increase with the coating application speed. The
demands for higher production rate and better quality require higher coating speeds with a laminar,
stable, two-dimensional, steady state flow. Our goals are to develop a numerical algorithm to study
the coupled fluid–elastic surface interaction and to understand the physics of the associated
hydrodynamic instabilities,6–8 in particular to investigate thetransient behaviour of the coupled
fluid–elastic surface interaction problem.

Many numerical methods have been devised to study moving boundary problems. These include,
but are not limited to, the finite difference=finite element arbitrary Lagrangian–Eulerian9–15 and
deformable cell16 methods as well as the marker-and-cell17–19 and related volume-of-fluid20 and
boundary element21–23 methods. Additionally, global mapping of an irregular and changing flow
domain to a rectangular space24,25on which the standard finite difference=finite volume discretization
can be applied has also been successful.26–28

The space–time (continuous-in-time) finite element formulation has been successfully applied to
various problems with fixed spatial domains.29–30The basics of the method, its implementation and
the associated stability and accuracy analyses can be found in these references. In a parallel
development the discontinuous-in-time space–time method31,32has been gaining popularity for fixed
domain problems as an alternative to the common semidiscrete (finite difference=finite element in
space, finite difference in time) approach. Its advantage is that the finite element interpolation
functions are discontinuous in time so that the fully discrete equations are solved one space–time slab
at a time, which makes the computations feasible.

The deformable spatial domain=space–time (DSD=ST) finite element formulation, which was
introduced earlier,35 has been successfully applied for the computation of unsteady flow involving
free surfaces and two-liquid interfaces,36 moving mechanical components37 and fluid–structure38 and
fluid–particle39 interactions. In the original DSD=ST method the stabilized finite element formulation
of the governing equations is written over the space–time domain of the problem and therefore the
deformation of the spatial domain with respect to time is automatically taken into account. With the
advanced stabilization techniques33,34 used in the original DSD=ST formulation, the numerical
stability problems which are sometimes encountered are overcome with minimal numerical
dissipation and therefore with minimal loss of accuracy.

In this study a numerical algorithm based on the deformable spatial domain=space–time (DSD=ST)
finite element method is employed to study the fluid–membrane interaction problem. We do not
include the stabilization techniques used in the original DSD=ST method, since the main focus of the
current study is on devising a numerical scheme to study the fluid–membrane interaction and
problems thus considered are generally not convection-dominated flows. Similar studies for the
steady state fluid–membrane interaction employing the finite element method40,41 and finite volume
method42 have been reported recently.

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The equations governing the dynamics of an incompressible, viscous fluid bounded by an elastic
membrane are outlined in the following.

The Navier–Stokes equations

We consider an incompressible, viscous fluid occupying at an instantt 2 �0;T
1
� a bounded region

Ot in R
nsd , with boundaryGt, wherensd is the number of space dimensions. The Navier–Stokes
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equations which describe the flow of an unsteady, imcompressible Newtonian fluid with constant
properties, written in terms of primitive variables, are

rl
@u
@t
� u ? Hu

� �

ÿ H ? s � 0; �1�

H ? u � 0 on Ot; 8t 2 �0;T
1
�; �2�

where rl�x; t�;u�x; t�; p�x; t� and s�x; t� are the density, velocity, pressure and stress tensor
respectively and the spatial and temporal co-ordinates are denoted byx andt respectively. The stress
tensor is written as the sum of its isotropic and deviatoric parts:

s � ÿpI � 2me�u�; �3�

with

e�u� � 1
2 �Hu � �Hu�T�; �4�

wherem represents the fluid dynamic viscosity andI denotes the identity tensor.
The momentum equation boundary conditions which are commonly employed may be classified as

either the specification of velocity components (Dirichlet type),

u � g on �Gt�g; �5�

or the specification of surface stresses (Neumann type),

s ? n � h on �Gt�h; �6�

wheren is the outward unit normal vector to the boundary and�Gt�g and �Gt�h are complementary
subsets of the boundaryGt.

The initial condition consists of the specification of velocity,u�x; 0� � u0. The initial velocity field
u0 is assumed to be solenoidal, i.e.

H ? u0 � 0 on O0: �7�

The elastic membrane equation

The membrane equation describing the deformable boundary�
~Gt�g 2 �Gt�g, is given as

rm
d2
d

dt2
ÿ

~Tk�
d2

dx2
�EI k� � s on xL 4 x4 xR; 8t 2 �0; T

1
�; �8�

with boundary conditions

djx�xL
� dL; djx�xR

� dR; EI kjx�xL
� MxL

; EI kjx�xR
� MxR

; �9�

whererm is the mass per unit area,~T is the tension per unit length,E is the modulus of elasticity,I is
the second moment of area,s is the hydrodynamic force per unit area,d is the displacement of the
elastic membrane,M is the bending moment and the curvaturek�x� is defined as

k�x� �
d2
d=dx2

�1 � �dd=dx�2�3=2 : �10�

As initial conditions, displacements and velocities att � 0 are specified for the membrane:

d�t � 0� � d0;
_d�t � 0� � _d0; �11�

where the overdot denotes the time derivative.
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FINITE ELEMENT FORMULATION

The formulation of the DSD=ST finite element method without including the stabilization technique
is outlined in the following. A detailed description of the DSD=ST finite element method and its
applications can be found in References 31 and 35.

In order to construct the finite element function spaces for the DSD=ST method, we partition the
computation time interval�0;T

1
� into subintervalsIn � �tn; tn�1� , where tn and tn�1 belong to an

ordered series of time levels0 � t0 < t1 < � � � < tN < tN�1 � T
1

. Let On � Otn
andGn � Gtn

. We
can define the space–time slabQn as the domain enclosed by the surfaceOn;On�1 andPn, wherePn is
the surface described by the boundaryGh

t as t travels In. Pn is divided into �Pn�g and �Pn�h with
respect to the type of boundary condition (Dirichlet or Neumann) being applied. For each space–time
slabQn we define the following finite element interpolation function spaces for velocity and pressure:

�Sh
u�n � fuh

juh
2 �H2h

�Qn��
nsd

;uh
� gh on �Pn�gg; �12�

�V h
u �n � fuh

juh
2 �H2h

�Qn��
nsd
;uh

� 0 on �Pn�gg; �13�

�Sh
p�n � �V h

p �n � fqh
jqh

2 �H1h
�Qn��g: �14�

Here H1h
�Qn� and H2h

�Qn� represent the finite-dimensional function space with first- and second-
order polynomials in space over the space–time slabQn. Over the parent (element) domain this space
is formed by using second-order (biquadratic) polynomials for velocity and first-order (bilinear)
polynomials for pressure in space and zeroth-order polynomials in time. Globally, the interpolation
functions are continuous in space but discontinuous in time.

Equations determining the value of unknownsu andp are derived using the DSD=ST finite element
method. The unsteady Navier–Stokes equations are multiplied by the finite element basis functions
and integrated over the space–time slabQn. Values of the unknowns are found based on the constraint
that the residuals vanish. The DSD=ST formulation for the Navier–Stokes equations can then be
written as follows: given�uh

�

ÿ

n , find uh
2 �Sh

u�n andph
2 �Sh

p�n such that
�

Qn

wh
? rl

@uh

@t
� uh

? Huh

� �

dQ �

�

Qn

e�wh
�:s�ph

;uh
�dQ �

�

Qn

qh
H ? uhdQ

�

�

On

�wh
�

�

n ? rl��u
h
�

�

n ÿ �uh
�

ÿ

n �dO

�

�

�Pn�h

wh
? hhdP; 8wh

2 �V h
u �n; 8qh

2 �V h
p �n: �15�

This procedure is applied sequentially to all the space–time slabsQ1;Q2; . . . ;QN . In the
variational formulation given by (15), the following notation is used:

�uh
�

�

n � lim
e!0

u�tn � e�; �16�

�

Qn

�� � �� dQ �

�tn�1

tn

�

O
h
t

�� � �� dO dt; �17�

�

Pn

�� � �� dQ �

�tn�1

tn

�

G
h
t

�� � �� dG dt: �18�
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Similarly, the elastic membrane equation is discretized using the DSD=ST finite element
formulation with the quadratic basis function~wh as

�tn�1

tn

�xR

xL

~wh
rm

d_d
h

dt
ÿ Tk�

d2

dx2
�EIk� ÿ s

h

 !

dx dt �

�tn�1

tn

�xR

xL

� ~wh
�

�

n rm��
_d

h
�

�

n ÿ �
_d

h
�

ÿ

n � dx dt � 0:

�19�

Since zeroth-order polynomials in time are employed in the computations, the first term in (19)
vanishes and the jump term represented by the second integral behaves like a backward Euler
scheme. The location of the membrane is updated using the relation

d
h
n�1 � d

h
n �

Dt

2
�
_d

h
n �

_d
h
n�1�: �20�

The Navier–Stokes and elastic membrane equations are solved sequentially and converge
iteratively (decoupled) on a solution that satisfies both for every time instant. In this approach the
fluid and the elastic membrane have to exchange information concerning the boundaries at the
interface. The fluid solver transmits to the membrane solver the hydrodynamic force (resulting from
the fluid action) at the interface. In return, the membrane solver transmits the information concerning
the interface displacement (resulting from the elastic membrane response to the hydrodynamic force).
The resulting system of equations,Ax � b, is solved by the GMRES technique43 with an incomplete
lower-upper (ILU) decomposition. The computations start with initial conditions

�uh
�

ÿ

0 � u0; �d
h
�

ÿ

0 � d0; �
_d

h
�

ÿ

0 �
_d

h
0; �21�

initial domainO0 and initial boundary conditions�G0�g; �G0�h and � ~G0�g.

NUMERICAL EXAMPLES

The following numerical examples are presented to demonstrate the capability and accuracy of the
DSD=ST finite element method and its application to fluid–membrane interactions.

One-dimensional wave equation

The one-dimensional, unsteady, pure convection problem with constant convection velocityu is

@T

@t
� u

@T

@x
� 0 on Ot � �xL; xR�; 8t 2 �0;T

1
�; �22�

with boundary conditions

T�xL; t� � 1; T�xR; t� � 0: �23�

The initial condition is a discontinuity spread across one spatial element:

T �x; 0� �
1 for xL 4 x4 0�4;
0 otherwise:

�

�24�

A comparison of the conventional method (finite element in space, finite difference in time) and the
DSD=ST finite element method is performed. Computed results with 100 uniform, linear elements
andDt � 0�01 are given in Figure 1 for both methods. With the conventional method (fixed mesh) the
discontinuity becomes smoother with increasing time owing to numerical diffusion, as shown in
Figure 1(a). The effect of reflection on the left open boundary is also noticeable. However, with the
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DSD=ST method the mesh is moved with the convection velocityu, the local convection effect
(relative to the mesh) is minimized and the exact solution is obtained, as shown in Figure 1(b).

Impulsive plane Couette flow and Stokes plate flow

To assess the accuracy of the DSD=ST finite element method, both an impulsive plane Couette
flow (approaching ultimate steady state) and a Stokes plate oscillating flow (a periodic flow) are
studied.

Transient Couette flow between two flat, parallel walls.The transient, developing flow between
two flat, parallel walls started from rest by the lower wall being impulsively set in motion with

Figure 1. One-dimensional convection of a discontinuity: initial condition and solutions att � 0�2 and 0�4 employing
(a) conventional (fixed mesh) and (b) DSD=ST (moving mesh) methods
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Figure 2. Schematic representation of model problems for (a) impulsive plane Couette flow and Stokes plate flow, (b) a
collapsible channel and (c) fluid–membrane interaction
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constant speed att � 0 is the impulsive plane Couette flow of interest here. Since the convection
terms vanish and the pressure is constant in the whole domain, the momentum equation for the first
velocity componentu�y; t� simplifies to the diffusion equation

@u

@t
�

@
2u

@y2
; �25�

with the second componentv�y; t� vanishing identically.
On a two-dimensional unit square domain as illustrated in Figure 2(a), the associated boundary and

initial components adopted are

u�0; t� � 1; u�1; t� � 0; u�y; 0� � 0: �26�

This problem admits an infinite series solution44 of the form

u�y; t� � 1 ÿ y ÿ 2
P1

n�1

1
np

exp�ÿn2
p

2t� sin�npy�: �27�

Figure 3. Comparison of analytical solutions with computed solutions for (a) impulsive plane Couette flow and (b) Stokes
oscillating plate flow with oscillation period of 2T
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A uniform mesh size of 3633 with constantDt � 0�001 is employed to solve this problem. Fully
developed conditions, i.e.@u=@x � 0, are enforced onDA and BC. The computed results are in
excellent agreement with the analytical solutions as presented in Figure 3(a).

Stokes oscillating flow between two flat, parallel walls.The Stokes oscillating flow for a semi-
infinite fluid at rest initially and bounded below by a solid plate aty � 0 is also computed. The
problem is to find the periodic motion of the fluid as the lower plate oscillates withu�0; t� � sin t.

The exact solution of Stokes flow for the semi-infinite domain,44

u�y; t� � exp�ÿy=
p

2� sin�t ÿ y=
p

2�; �28�

is used to establish the boundary and initial conditions for the truncated domain, a finite rectangular
domain with04 x4 1 and04 y4 5, as shown in Figure 2(a). A uniform mesh size of 3633 with
constantDt � p=64 is employed to solve this problem. Fully developed conditions are enforced on
DA andBC, as before. The computed results agree well with the analytic solutions as presented in
Figure 3(b).

Figure 4. Time histories of (a) hydrodynamic force and (b) position of membrane atx � 1 for collapsible channel problem
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Figure 5. Membrane (a) velocity and (b) shape at selected times for collapsible channel problem

Figure 6. Time history of strain rate of elastic membrane for collapsible channel problem
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Fluid-membrane interactions

The method is first verified against a lubrication theory solution45 of a collapsible channel problem
(approaching ultimate steady state) and then applied to a fluid–membrane interaction problem with
sinusoidal forcing (time-dependent).

Figure 7. Time histories of (a) velocity and (b) pressure at (x, y)� (2, 0�5) for collapsible channel problem

Figure 8. Pressure field at initial condition and near steady state for collapsible channel problem: (a)t � 0 �pmin � 0;
pmax � 2�026, 50 contours); (b)t � 100 �pmin � 0; pmax � 1�845, 50 contours)
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Steady state case.A channel with a collapsible segment, as shown in Figure 2(b), is investigated.
Only half of the domain is considered, since the problem is symmetric with respect to the centre of
the channel. The steady state solution of the problem has been studied using a finite element method
with both a streamfunction–vorticity formulation40 and a primitive variable formulation.41

The inflow is taken to be plane Poiseuille flow with an inflow rateQ and hence a parabolic velocity
profile is imposed acrossAG. At the downstream end of the channel,CD, a fully developed boundary
condition is applied. The membraneFE is simply supported at both ends, i.e. both the deflection and
bending moment vanish, so thatd�xL � 0� � d�xR � L� � 0 andM�xL � 0� � M�xR � L� � 0. The
shape of the membrane is unknowna priori and must be determined as part of the solution. A channel
with H0 � 2;Lu � 1;L � 4 and Ld � 2 is assumed. The parameters used for the computation are
rl � 1; m � 0�1; rm � 100; ~T � 38;EI � 0;Pe � ÿ9 andQ � 1. The resulting Reynolds number is
Re � ruavgH0=m � 20. A mesh size of 2969 with constantDt � 0�05 is employed for this problem.
The computation begins from an initial state which assumes an undeformed wall and plane Poiseuille
flow.

Figure 9. Effects of membrane (a) density and (b) tension on strain rate for collapsible channel problem
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Figures 4(a) and 4(b) present the time histories of the hydrodynamic force and position of the
membrane respectively at the centre of the elastic membrane, i.e.x � 1. The velocity and shape of the
membrane at selected times are presented in Figure 5. The shape of the membrane approaches steady
state non-monotonically. At steady state the acceleration is zero. The tension of the membrane
balances the hydrodynamic force acting on it and hence determines the shape of the membrane from
the elastic membrane equation (8). The steady state shape of the membrane is not exactly symmetric
with respect to the centre of the membrane. It agrees well with the prediction obtained by the
lubrication theory solution,45 which falls almost exactly on the numerical solution fort � 100 (nearly
steady state), as shown in Figure 5(b).

The strain rate~e�t�, defined as

~e�t� �
L�t� ÿ L�t � 0�

L�t � 0�
�

Lt ÿ L0

L0
�

1
L0

�XR

xL

1 �
dy

dx

� �2
" #s

dx ÿ L0

( )

; �29�

is a ‘global’ measurement of the response of the elastic membrane. The time history of the strain rate
is given in Figure 6. Figure 7 presents the time histories of the velocity components and pressure at

Figure 10. Time histories atx � 0�5 of (a) hydrodynamic force and (b) displacement of membrane with harmonic forcing
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�x; y� � �2; 0�5�, point J shown in Figure 2(b). All the quantities presented, both for the elastic
membrane and the fluid, demonstrate anon-monotonicresponse during the transition period and
approach an ultimate steady state asymptotically. This oscillatory response results mainly from the
inertia of the membrane and the non-linearity of the fluid–membrane interactions. The pressure fields
at t � 0 (the initial condition) andt � 100 (nearly steady state) are given in Figure 8. The quantities
vary smoothly over the entire domain. The singularity of the pressure field which occurs when using
the streamfunction–vorticity formulation40 is not present, demonstrating clearly the superiority of the
primitive variable formulation. Choosing the proper formulation, therefore, is a vital factor for a
problem where the accurate pressure solution is required. In this case, for example, the pressure
affects the shape of the elastic membrane, which in turn affects the velocity field separately from the
direct influence of pressure.

The effects of the density and tension of the membrane on the response of the fluid–membrane
interactions are also investigated, as presented in Figure 9. In Figure 9(a) the time histories of the
strain rate of the membrane withrm � 100 and 200 are shown. Both cases reach the same steady

Figure 11(a,b). Membrane (a) velocity and (b) shape at early times of fluid–membrane interaction with harmonic forcing
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Figure 11(c,d). Membrane (c) velocity and (d) shape at later times of fluid–membrane interaction with harmonic forcing

Figure 12. Time history of strain rate of elastic membrane with harmonic forcing
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state. The smaller the density of the membrane, the larger are its deformation and inertia and hence
the longer it takes for the fluid–membrane system to reach steady state, as expected. The time
histories of the strain rate of the membrane with~T � 39 and 18�5 are shown in Figure 9(b). The
smaller the tension of the membrane, the larger is its deformation and the smaller is its frequency of
oscillation. This latter observation agrees with one’s intuition and results in Reference 46.

Time-dependent case.The second model problem of fluid–membrane interaction, with only one
flexible wall, is represented schematically in Figure 2(c). The initial size of the cavity is unity in both
the x- and y-direction. There are two openings,CD and EF, each with a length of 1=16. The
membraneAB is simply supported at both ends. The shape and motion of the membrane are unknown
a priori and must be determined as part of the solution. The fluid–membrane interaction is initiated
by the motion of the top plate,u�t�, and the external applied pressurePe. On the rigid boundaries
AB;BC;DE and FA the no-slip condition is applied, on the open boundaryCD a fully developed
condition is applied and no boundary condition is applied onEF.

The parameters used for the computations arerl � 1; m � 0�01; rm � 1; ~T � 1;EI � 0 and
Pe � 0. The flow is started by the motion of the top plate in its own plane with speed

Figure 13. Time histories of (a) velocity and (b) pressure at centre of right exit with harmonic forcing
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u�t� � 1 ÿ cos�2pt=Tf �, whereTf � 5. The resulting Reynolds number isRe � mumaxL=rt � 200. A
mesh size of 33633 with constantDt � 0�05 is employed. Computed results are presented in
Figures 10–14.

Figure 10 shows the time histories of the hydrodynamic force and displacement of the membrane at
x � 0�5. The larger the hydrodynamic force acting on the membrane, the larger is the deformation of
the membrane, andvice versa. The deformation of the elastic membrane is 180� out-of-phase with the
hydrodynamic force acting on it after a period of transition. The velocity distribution and shape of the
membrane are given for selected times in Figure 11. After a period of transition the fluid–membrane

Figure 14. Streamlines with harmonic forcing at timest� (a) 46�25, (b) 47�5, (c) 48�75 and (d) 50
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system approaches a periodic response gradually, as demonstrated in Figures 11(c) and 11(d). The
time history of the strain rate of the membrane is given in Figure 12 and the time histories of the
velocity and pressure at the centre of the right exit are given in Figure 13. Streamlines at
t � 46�25; 47�5; 48�75 and 50 of the last cycle of the simulation are given in Figure 14. Since the
velocities of the membranes are generally not zero, the streamlines intersect with the membrane.

CONCLUSIONS

We employ the deformable spatial domain=space time (DSD=ST) finite element method to study
steady and unsteady flows involving moving boundaries. Based on the space–time finite element
formulation, the deformation of the spatial domain with respect to time is automatically taken into
account. One-dimensional, two-dimensional and deformable domain problems are used to
demonstrate the capabilities and accuracy of the present algorithm.

Computed results of the collapsible channel problem (approaching ultimate steady state) show a
non-monotonicresponse of the fluid and elastic membrane during the transition period. The inertia of
the elastic membrane is found to be important in studying flow-induced vibration problems, as
demonstrated Figure 9(a). Using the time-dependent algorithm with no quasi-static assumption for
the elastic membrane,47 we can investigate the transient solution of the fluid–membrane interactions.
The steady state solution agrees well with the prediction from lubrication theory.45 Computed results
of the fluid–membrane interaction with harmonic forcing (a periodic flow) show that the fluid–
membrane reaches a periodic response after a few cycles of transition. This study constitutes the
preparation phase for investigating coupled air–sheet interactions2,3 and the associated hydrodynamic
instabilities.6–8
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